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A spin-1
2 two-leg ladder with four-spin ring exchange is studied by quantized Berry phases, used as local-

order parameters. Reflecting local objects, nontrivial ��� Berry phase is founded on a rung for the rung-singlet
phase and on a plaquette for the vector-chiral phase. Since the quantized Berry phase is topologically invariant
for gapped systems with the time-reversal symmetry, topologically identical models can be obtained by the
adiabatic modification. The rung-singlet phase is adiabatically connected to a decoupled rung-singlet model
and the vector-chiral phase is connected to a decoupled vector-chiral model. Decoupled models reveal that the
local objects are a local singlet and a plaquette singlet, respectively.
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I. INTRODUCTION

The recent progress in the multiple-spin exchange inter-
actions is attracting much attention. It has been found to be
important in several materials such as two-leg ladder com-
pound LaxCa14−xCu24O41,

1–4 two-dimensional antiferromag-
net La2CuO4,5,6 magnetism of two-dimensional quantum sol-
ids, e.g., solid 3He films,7 and Wigner crystals.8 Four-spin
ring exchange plays an essential role in several models to
give rise to exotic phases due to its frustration, e.g., the
vector-chirality phases,9 nematic orderings,10 and octapolar
order.11

Especially, the two-leg ladder model with the multiple-
spin exchange interactions has been studied extensively.12–19

To clarify its rich phases, not only correlation functions cor-
responding to phases but also entanglement concurrence,20

entanglement entropy,21,22 and string order14,23 are useful to
characterize the phases. As such a novel order parameter,
which is beyond the Ginzburg-Landau symmetry-breaking
description, there is an order parameter based on the topo-
logical invariants corresponding to the topological order.24

Recently, Berry phases25 have been used in order to detect
the topological order and the quantum order.26–28 The Berry
phases are quantum quantities based on the Berry connection
which is defined by the overlap between the two states with
infinitesimal difference and do not have any corresponding
classical analogs. Then, one can define it even though there
is no classical-order parameter. The advantage of the Berry
phase is that it quantizes to 0 or � even in the finite-sized
systems in any dimension when the system has the time-
reversal invariance. It has been successfully applied to sev-
eral quantum systems such as generalized valence bond solid
states,29 dimerized Heisenberg models,28,30 and t-J model.31

For these systems, the nontrivial ��� Berry phase on a link
reveals a singlet on the link, which is a pure quantum object
due to two-spin exchange.

In this paper, we extend the quantized Berry phase to be
sensitive to the effect of four-spin ring exchange and apply it
to a S=1 /2 spin ladder with a ring-exchange interaction as
an alternative to correlation functions, entanglement, and
string order. According to the phase diagram,14 there are two

first-order transitions from the ferromagnetic phase. One is
transition to the rung-singlet phase. The other is that to the
dominant collinear spin phase, which connects to the domi-
nant vector-chirality phase through crossover at a self-dual
point.17 These two phases are the singlet phases with short-
range order and have dominant correlation of collinear spin
and vector chirality, respectively. The rung-singlet phase in-
cludes the spin ladder with only two-spin exchange interac-
tions and the dominant vector-chirality phase includes that
with only four-spin exchange interactions. These three
phases have a unique ground state with finite gap, while the
other phases including the ferromagnetic phase do not have
finite gap under the translational symmetry. Moreover,
through the spin-chirality duality transformation, the gap in
the dominant vector-chirality phase of the original Hamil-
tonian is smoothly connected to that in the rung-singlet phase
of the transformed Hamiltonian.12 Although it is believed
that the ground state of the rung-singlet phase is well ap-
proximated by the product of local rung singlets, there is no
simple picture for the dominant vector-chirality phase. To
clarify it, we discuss the adiabatic connection of the Hamil-
tonian to a simple model, i.e., a topologically equivalent
model.

II. DEFINITION OF THE BERRY PHASE

Let us start with the definition of Berry phase25 in a quan-
tum spin system. For the parameter-dependent Hamiltonian
H���, the Berry phase � of the ground state is defined as
i�=�0

2�A���d� �mod 2��, where A��� is the Abelian Berry
connection obtained by the single-valued normalized ground
state �gs���� of H��� as A���= �gs�������gs����. This Berry
phase is quantized to 0 or � if �gs���� is a gapped ground
state and the Hamiltonian H��� is invariant under the anti-
unitary operation �, i.e., �H��� ,��=0. It has a remarkable
property that the Berry phase has topological robustness
against the small perturbations unless the energy gap be-
tween the ground state and the first excited state closes. We
note that the Berry phase is undefined if the energy gap van-
ishes while varying the parameter �. Then, we limit our-
selves to the rung-singlet phase and the dominant vector-
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chirality �collinear spin� phase, which have finite gap. To
calculate the Berry phase numerically,32 we use �
=limM→� �M, where �M is defined by discretizing the param-
eter space of � into M points as �M =−	m=1

M arg C��m� ,�m
=2�m /M, where C��m� is defined by C��m�
= �gs��m� �gs��m+1�� with �M+1=�1. In general, M can be a
very small number.33

To study a local structure of the quantum system, such as
a local singlet, we use a local spin twist on a specified link
i , j as the parameter �.28 Under this local spin twist on a link
i , j the term Si

+Sj
−+Si

−Sj
+ in the Hamiltonian is replaced with

ei�Si
+Sj

−+e−i�Si
−Sj

+, where Si
�=Si

x� iSi
y. Although previous

studies26–29,31 deal with the spin twist only for the two-body
terms, we extend the twist to the four-spin exchange interac-
tions. Since the Hamiltonian is written by H=	ijJijSi ·S j
+	ijklKijkl�Si ·S j��Sk ·Sl�, the local spin twist for a selected
link i , j is introduced for all the term Si ·S j in the Hamil-
tonian. As described below, the extended Berry phase can
detect not only the local singlet but also the plaquette singlet.

The quantized Berry phase is considered as a link vari-
able. Then each link is labeled as one of three labels: “0
bond,” “� bond,” or “undefined.” Especially, we shall calcu-
late the leg Berry phase �l, the rung Berry phase �r, and the
diagonal Berry phase �d. The quantization of the Berry phase
is guaranteed by the time-reversal symmetry � of the quan-
tum spin system.26

III. MODELS AND THE RESULTS

A. S=1 Õ2 spin ladder model with four-spin exchange

The S=1 /2 spin ladder model with four-spin ring ex-
change is described by the following Hamiltonian:

Hcyc = J
	
i=1

N/2

	
�=1,2

Si,� · Si+1,� + 	
i=1

N/2

Si,1 · Si,2�
+ K	

i=1

N/2

�Pi + Pi
−1� �1�

with the ring exchange

Pi + Pi
−1 = Si,1 · Si,2 + Si+1,1 · Si+1,2 + Si,1 · Si+1,1 + Si,2 · Si+1,2

+ Si,1 · Si+1,2 + Si,2 · Si+1,1 + 4�Si,1 · Si,2�

��Si+1,1 · Si+1,2� + 4�Si,1 · Si+1,1��Si,2 · Si+1,2�

− 4�Si,1 · Si+1,2��Si,2 · S1,i+1� , �2�

where Si,� are the spin-1
2 operators on the site �i ,�� and N is

the total number of sites. The periodic boundary condition is
imposed as SN/2+i,�=Si,� for all of the models in this paper.
We set the parameters as J=cos 	 and K=sin 	. Figure 1
shows Berry phases on local links of N=16 ladder obtained
numerically by the exact diagonalization method. Three
kinds of Berry phases, �l on the leg link �i ,1�− �i ,2�, �r on
the rung link �i ,1�− �i ,2�, and �d on the rung link �i ,1�− �i
+1,2�, are calculated and turn out to be translational sym-
metric. Nontrivial ��� Berry phases obtained for finite-size
systems identified two different phases: one is the rung-
singlet phase and the other is the dominant vector-chirality

phase including the dominant collinear spin phase. These
three phases have a spin gap in thermodynamic limit.12,14

The crossover between the dominant vector-chirality phase
and the dominant collinear spin phase is not found. It is
neither found by the entanglement20 nor by the Lieb-Schulz-
Mattis twist operator.14 In the dominant collinear spin phase,
collinear spin-spin correlations are dominant, which means
that spins on the same leg exhibit ferromagnetic
correlations.14 It will be identified by another kind of Berry
phase or another type of entanglement.

Berry phases in the other phases are also obtained in Fig.
1 but become undefined due to gap closing in the thermody-
namic limit, such as in the ferromagnetic phase and around
the self-dual point 	=arctan�1 /2��0.14�. The staggered
dimer and scalar-chirality phases around the self-dual point
are Z2 symmetry-breaking phase with twofold degeneracy in
the thermodynamic limit.20 In a N=16 system, there is a
finite-size gap in the Sz=0 sector of Hcyc for most values of 	
and we can obtain the Berry phase. However, results around
the self-dual point in Fig. 1 shows the numerical instability,
i.e., Berry phase becomes undefined. Note that we can define
non-Abelian Berry phase to avoid the numerical instability
with using the gap above the twofold degenerated ground
states in the thermodynamic limit around the self-dual point.
The transition point 	c between the rung-singlet phase and Z2
symmetry-breaking phase is about 0.1�,12,14 while Fig. 1
shows 	c
2�. To clarify this difference, we shall study the
Berry phase at 	=0.

Before studying the model at 	=0, let us now interpret the
phases by the adiabatic modification in order to obtain a
decoupled model with the same Berry phases. We shall cal-
culate the � dependence of the energy gap to see whether the
gap closes or not during the adiabatic modification since the
Berry phase remains the same if the gap does not close dur-
ing the adiabatic modification.

1. Rung-singlet phase

We consider the adiabatic modification from Hcyc �	=1.8� in
the rung-singlet phase to the completely decoupled model
which has the Heisenberg-type coupling only on the rung
bonds,

HRS = 	
i=1

N/2

Si,1 · Si,2. �3�

These two models are connected by adiabatic parameter � as
H���= �1−��Hcyc+�HRS.

Ferromagnetic Rung SingletVector Chirarity2Z sym. breaking
undef. due to undef. due to

gap−closing gap−closing

������������������������������
������������������������������������������������������������������������������������������������������������������������������������
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FIG. 1. �Color online� Leg, rung, and diagonal Berry phases �l,
�r, and �d of the S=1 /2 periodic N=16 ladder model with four-spin
ring exchange as a function of 	 �J=cos 	 ,K=sin 	� with the sche-
matic pictures of corresponding phases. Berry phases are zero, �
�shaded region�, or undefined �region without data�.
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As shown in Fig. 2, the minimum gap through the twist �
does not close. It means not only that the gap of Hcyc �	=1.8�

adiabatically connects to the singlet-triplet gap but also that
these two models with the same Berry phases are topologi-
cally identical. This adiabatic connection is consistent with
the fact that the ground state is well approximated by the
product of local rung singlets and is identified by entangle-
ment concurrence of two spins on a rung.20

2. Vector-chirality phase

The dominant vector-chirality phase is characterized by
correlations of the vector-chirality order parameters Si,�
�Si+1,� and Si,1�Si,2,14 while entanglement concurrence of
two spins on a diagonal bond fails to capture this phase
around J /K=1 �	=� /2� point.20 Motivated by the vector-
chirality order parameter, we consider the adiabatic modifi-
cation from Hcyc �	=0.8� in the dominant vector-chirality phase
to a decoupled model as follows:

HDVC = 	
i=1

N/4

�S2i,1 � S2i,2� · �S2i+1,1 � S2i+1,2� . �4�

We call its ground state as the “dimerized vector-chiral state”
since it minimizes the local operator �S2i,1�S2i,2� · �S2i+1,1
�S2i+1,2�= �S2i,1 ·S2i+1,1��S2i,2 ·S2i+1,2�
− �S2i,1 ·S2i+1,2��S2i,1 ·S2i+1,2�. This operator is used as an or-
der parameter in previous studies and a classical spin con-
figuration corresponds to a 90° spin structure.15 The ground
state is the product of plaquette singlet states.34 Moreover,
through the duality transformation,12 HDVC is mapped to the

summation of S̃2i,1 · S̃2i,2+ S̃2i+1,1 · S̃2i+1,2− S̃2i,1 · S̃2i+1,2

− S̃2i,2 · S̃2i+1,1. This transformed model is identified as the
rung-singlet phase by the Berry phase.

Figure 3 shows the minimum energy gap through the twist
� of H���= �1−��Hcyc �	=0.8�+�HDVC in the adiabatic defor-
mation. Three kinds of gaps agree with untwisted gap �=0
and have system-size dependence. Since the gap does not
close during the modification in N=20 system at least, we
identify that the nontrivial diagonal Berry phase �d exhibits

the decoupled vector-chiral state. Although the gap in the
thermodynamic limit at �=0 is subtle in Fig. 3, the density-
matrix renormalization-group �DMRG� method has shown a
small gap which smoothly connects to a finite gap in the
rung-singlet phase of the transformed Hamiltonian.12 We
should note that the Hamiltonian HDVC breaks the transla-
tional symmetry although the original Hamiltonian does not.
In other words, although the gap does not close by the twist
of diagonal bond in oddth plaquette, it does for the diagonal
bond in eventh plaquette. In this sense, the ground state of
Hcyc �	=0.8� is locally identical to the vector chiral state.

B. S=1 Õ2 spin ladder model without four-spin exchange

Although the rung-singlet phase is thought to include 	
=0,14 Fig. 1 shows that the rung-singlet phase does not in-
clude Hcyc �	=0 �K /J=0�. To clarify it, we study a S=1 /2 spin
ladder model without four-spin exchange,

Hlad = Jl	
i=1

N/2

	
�=1,2

Si,� · Si+1,� + Jr	
i=1

N/2

Si,1 · Si,2, �5�

where Jl and Jr are parametrized as Jl=sin 	 and Jr=cos 	,
respectively. We consider the antiferromagnetic case of 0
�	
� /2 in this paper to concentrate on Hlad �	=�/4
=Hcyc �	=0. Note that Hlad �	=0=HRS. On the other hand,
Hlad �	=�/2 is the model of decoupled two chains, which has
gapless excitation in the thermodynamic limit.

Figure 4 shows the 	 dependence of the Berry phases on
local links of Hlad at N=16 except for the gapless point 	
=� /2. �d=0 is trivial because there is no diagonal interac-
tion. Although the gap of untwisted Hamiltonian �=0 is
smoothly connecting,35 the gap of twisted Hamiltonian �
=� for �r closes at 	�0.233�
� /4 and �r changes. We
denote the �r=0 phase for 	�� /4 as rung� phase, which
implies the limitation of the localized rung-singlet picture
and encourages us to use another picture such as the resonat-
ing valence bond theory.36 It is consistent with very strong
quantum fluctuations introduced on the product singlet
ground state37 and with “nonperturbative” �in Jr /Jl� behavior
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FIG. 2. Minimum gaps for twist � on a leg, rung, and diagonal
links of the S=1 /2 periodic ladder model with four-spin ring ex-
change as a function of adiabatic parameter � for H���= �1
−��Hcyc �	=1.8�+�HRS. Several data are plotted for N=8, 12, 16,
and 20.
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FIG. 3. Minimum gaps for twist � on a leg, rung, and diagonal
links of the S=1 /2 periodic ladder model with four-spin ring ex-
change as a function of adiabatic parameter � for H���= �1
−��Hcyc �	=0.8�+�HDVC. Several data are plotted for N=8, 12, 16,
and 20.
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obtained numerically.35 To clarify the phase which has no �
bond, we need further discussion while considering another
kind of spin twist, because the twist should correspond to a
local structure of the model. It should be emphasized that the
rung� phase results from the quantum phase transition of the
twisted Hamiltonian ��=�� for �r and is not contradicting
previous studies for untwisted Hamiltonian.

IV. CONCLUSION

In conclusion, we have shown that the quantized Berry
phases are useful to classify the phases of spin chains with
four-spin ring exchange. In the dominant vector-chirality

phase, which comes from the ring-exchange interaction, the
Berry phase on each diagonal link is used as a plaquette
variable and becomes a nontrivial value ���, while the Berry
phase has been used as a link variable in previous study. The
Berry phase is also useful to clarify the phase boundary from
the finite-size systems since it is quantized even in the finite-
size systems. The property of the phase is revealed through
the adiabatic deformation into a decoupled model: the rung-
singlet phase �and the vector-chirality phase� corresponds to
a product of rung singlets �plaquette singlets�. These two
phases are connecting through the duality transformation.
The other phases of this model will be detected by the Berry
phase with another kind of twist or the non-Abelian Berry
phase for twofold-degenerated ground states.
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